Distance regular covers of the complete graph
نویسندگان
چکیده
منابع مشابه
Distance regular covers of the complete graph
Distance regular graphs fall into three families: primitive, antipodal, and bipar-tite. Each antipodal distance regular graph is a covering graph of a smaller (usually primitive) distance regular graph; the antipodal distance graphs of diameter three are covers of the complete graph, and are the first non-trivial case. Many of the known examples are connected with geometric objects, such as pro...
متن کاملArc-transitive regular cyclic covers of the complete bipartite graph
Characterizing regular covers of edge-transitive or arc-transitive graphs is currently a hot topic in algebraic graph theory. In this paper, we will classify arctransitive regular cyclic covers of the complete bipartite graph Kp,p for each odd prime p. The classification consists of four infinite families of graphs. In particular, such covers exist for each odd prime p. The regular elementary a...
متن کاملAlgorithmic Aspects of Regular Graph Covers
A graph G covers a graph H if there exists a locally bijective homomorphism from G to H. We deal with regular covers where this homomorphism is prescribed by the action of a semiregular subgroup of Aut(G). We study computational aspects of regular covers that have not been addressed before. The decision problem RegularCover asks for given graphs G and H whether G regularly covers H. When |H| = ...
متن کاملAntipodal Distance Transitive Covers of Complete Graphs
This paper is a contribution towards the determination of all finite distance-transitive graphs. We obtain a classification of all the antipodal distance-transitive graphs having as antipodal quotient a complete graph Kn . Such a graph necessarily has diameter 2 or 3 (see for example [2, Proposition 4.2.2 (ii)]). Those of diameter 2 are simply the complete multipartite graphs Kr,...,r with n pa...
متن کاملArc-transitive abelian regular covers of the Heawood graph
In this sequel to the paper ‘Arc-transitive abelian regular covers of cubic graphs’, all arc-transitive abelian regular covers of the Heawood graph are found. These covers include graphs that are 1-arc-regular, and others that are 4-arc-regular (like the Heawood graph). Remarkably, also some of these covers are 2-arc-regular.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 1992
ISSN: 0095-8956
DOI: 10.1016/0095-8956(92)90019-t